97 research outputs found

    Maximizing the Efficiency using Montgomery Multipliers on FPGA in RSA Cryptography for Wireless Sensor Networks

    Get PDF
    The architecture and modeling of RSA public key encryption/decryption systems are presented in this work. Two different architectures are proposed, mMMM42 (modified Montgomery Modular Multiplier 4 to 2 Carry Save Architecture) and RSACIPHER128 to check the suitability for implementation in Wireless Sensor Nodes to utilize the same in Wireless Sensor Networks. It can easily be fitting into systems that require different levels of security by changing the key size. The processing time is increased and space utilization is reduced in FPGA due to its reusability. VHDL code is synthesized and simulated using Xilinx-ISE for both the architectures. Architectures are compared in terms of area and time. It is verified that this architecture support for a key size of 128bits. The implementation of RSA encryption/decryption algorithm on FPGA using 128 bits data and key size with RSACIPHER128 gives good result with 50% less utilization of hardware. This design is also implemented for ASIC using Mentor Graphics

    CPU card for Remote Terminal Unit of SCADA System for Traction Power Network of Railways

    Get PDF
    Abstract: SCADA stands for Supervisory Control And Data Acquisition. SCADA system is employed all over the world for effectively monitoring and controlling different utility networks. Indian Railways employs SCADA systems for monitoring and controlling the distribution of Traction Power. The systems employed were of proprietary in nature and did not have any standard specifications both with respect to protocol and hardware. Moreover, the SCADA systems from different vendors could not coexist in a given network. In view of this, Railways formulated the specifications for the SCADA systems wherein the systems should conform to SPORT protocol for data transaction and corrective action of tripping the circuit breakers in case of over load etc. In current scenario, lots of intelligence needs to be built into the Remote Terminal Unit, which requires a powerful Central Processor Unit (CPU). The objective of this paper is to present the design and development of the CPU Card for Remote Terminal Unit of SCADA system for Indian Railways. The traction power distribution network requires continuous real time monitoring and controlling of the system failing which, leads to catastrophic disasters. SCADA system helps in achieving real time monitoring. This new CPU card design meets all the high demands of the Indian Railways

    Design of RSA Processor and Field Arithmetic of ECC with Vedic Multipliers for Nodes in Wireless Sensor Networks

    Get PDF
    In Wireless Sensor Nodes due to the resource constraintsthe fast multipliers are preferred for data processing. In this paper, the RSA processor using Vedic multiplication technique is proposed which is capable of achieving considerable speed and with minimum area utilization. The multiplication of two prime numbers is implemented using Nikhilam and UrdvaTriyagbagam multipliers. The results shows that there is good improvement in delay and device utilization usingUrdvaTriyagbagam method. UrdvaTriyagbagamis utilized in Point addition and Point doubling, which are finite field arithmetic of ECC in both prime and binary field. Multipliers are implemented on RSA and ECC over NIST/SECG GF (p) and GF (2m) curves and estimates the algorithms with respect to performance in speed and memory usage

    Complete axial torsion of the gravid uterus by 180 degrees

    Get PDF
    Minimal rotation of the gravid uterus, till 45 degrees, is a normal finding in the third trimester of pregnancy. However, a pathologic rotation of the uterus beyond 45 degrees-torsion of the entire uterus-is rarely seen in obstetrical practice. We present a case of uterine torsion in pregnancy diagnosed at caesarean section. A 25-years-old primigravida was admitted with pain abdomen and tenderness over the lower abdomen. She underwent emergency LSCS (lower segment caesarean section) for foetal bradycardia. Intra-operatively, the uterus was rotated 180 degrees right to left. There was an urgency to deliver the foetus due to bradycardia and hence, an incision on the posterior wall of the uterus was made as there was no time to delineate the anatomy. Torsion was corrected and the uterus was sutured. Prompt recognition and management of this condition is necessary for better maternal and foetal outcome. Uterine torsion is an infrequently reported and potentially dangerous complication of pregnancy that occurs mainly in the third trimester with adverse maternal and neonatal consequences

    Implementation of ECC on FPGA using Scalable Architecture With equal Data and Key for WSN

    Get PDF
    Security of data transferred on the Wireless Sensor Network is of vital importance. In public key cryptography RSA algorithm has been used for a long time, but it does not meet the constraints of WSNs. Elliptic Curve Cryptography(ECC) has been employed recently because of its highest security for same length bit. ECC point multiplication operation is time consuming which affects the speed of encryption and decryption of data. Security in WSNs is addressed in our work, where a modified ECC is designed by performing the point multiplication using Montgomery multiplication technique that achieves considerable speed and with reduced area utilization. The ECC is first simulated on different FPGA devices, with key length 11, 112, 131 and 163 bits and the area-speed tradeoff is compared. ECC algorithm is implemented with software and hardware choosing Artix 7 XC7a100t-3csg324 FPGA which supports key lengths of 11, 112, 131 and 163 bits. When implemented on a Artix 7 FPGA, it completes 163 bit data encryption operation over GF(2163 ) in 1ms with the maximum frequency of 229MHz. The ECC algorithm is reconfigurable with low level to high level security with different bit key sizes. The proposed ECC algorithm modeled using VHDL and synthesized on Spartan 3 and 6, Virtex 4, 5 and 6 and Artix7 before the hardware implementation on Atrix 7. The design satisfies the needs of resource constrained devices by decreasing the encryption and decryption time to 1 ms with equal keylength and datasize, while device utilization is within 13%

    Reconfigurable hardware architecture of public key crypto processor for VANET and wireless sensor nodes

    Get PDF
    This work proposes encryption of text and image data, embedding as elliptic curve point. Finite field arithmetic is utilised efficiently in this reconfigurable crypto system. Pre-computations for text data and image input conversion is done using MATLAB. This architecture is tailored for cryptographic applications and VANET using Xilinx Spartan-xc3s100e-4-fg320 FPGA with Verilog coding. Total encryption and decryption time results around 10.09021 microseconds for 100×100 images, 22.091 microseconds for 256×256 images and 0.029 microseconds for a message. The message size is varied with different stream size and dynamic mapping of input data and a cipher image with high randomness indicates good security i.e., less vulnerable to attacks. An entropy statistical analysis is performed on plain and encrypted images to assess the strength of the proposed method. An encryption throughput rate is 450 Mbps

    Design issues on software aspects and simulation tools for wireless sensor networks

    Get PDF
    In this paper, various existing simulation environments for general purpose and specific purpose WSNs are discussed. The features of number of different sensor network simulators and operating systems are compared. We have presented an overview of the most commonly used operating systems that can be used in different approaches to address the common problems of WSNs. For different simulation environments there are different layer, components and protocols implemented so that it is difficult to compare them. When same protocol is simulated using two different simulators still each protocol implementation differs, since their functionality is exactly not the same. Selection of simulator is purely based on the application, since each simulator has a varied range of performance depending on application

    Synergistic effect p-phenylenediamine and n,n diphenylthiourea on the electrochemical corrosion behaviour of mild steel in dilute acid media

    Get PDF
    Electrochemical studies of the synergistic effect of p-phenylenediamine and n,n diphenylthiourea (TPD) as corrosion inhibitor of mild steel in dilute sulphuric and hydrochloric acid through weight loss and potentiodynamic polarization at ambient temperature were performed. Experimental results showed the excellent performance of TPD with an optimal inhibition efficiency of 88.18 and 93.88 %in sulphuric and 87.42 and 87.15 %in hydrochloric acid from both tests at all concentration studied. Polarization studies show the compound to be a mixed-type inhibitor. Adsorption of deanol on the steel surface was observed to obey the Langmuir and Frumkin isotherm models. X-ray diffractometry confirmed the absence of corrosion products and complexes. Optical microscopy confirmed the selective inhibition property of TPD to be through chemical adsorption on the steel surfac

    The Critical Role of N- and C-Terminal Contact in Protein Stability and Folding of a Family 10 Xylanase under Extreme Conditions

    Get PDF
    Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive.In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as ΔF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions
    corecore